NAME DATE PERIOD

Lesson 7 Summary

The circumference C of a circle is proportional to the diameter d, and we can write this relationship as $C = \pi d$. The circumference is also proportional to the radius of the circle, and the constant of proportionality is $2 \cdot \pi$ because the diameter is twice as long as the radius. However, the **area of a circle** is *not* proportional to the diameter (or the radius).

The area of a circle with radius r is a little more than 3 times the area of a square with side r so the area of a circle of radius r is approximately $3r^2$. We saw earlier that the circumference of a circle of radius r is $2\pi r$. If we write C for the circumference of a circle, this proportional relationship can be written $C = 2\pi r$.

The area A of a circle with radius r is approximately $3r^2$. Unlike the circumference, the area is not proportional to the radius because $3r^2$ cannot be written in the form kr for a number k. We will investigate and refine the relationship between the area and the radius of a circle in future lessons.

Lesson 7 Glossary Terms

area of a circle