NAME DATE PERIOD ## **Lesson 5 Summary** The circumference of a circle is the distance around the circle. This is also how far the circle rolls on flat ground in one rotation. For example, a bicycle wheel with a diameter of 24 inches has a circumference of 24π inches and will roll 24π inches (or 2π feet) in one complete rotation. There is an equation relating the number of rotations of the wheel to the distance it has traveled. To see why, let's look at a table showing how far the bike travels when the wheel makes different numbers of rotations. | number of rotations | distance traveled (feet) | |---------------------|--------------------------| | 1 | 2π | | 2 | 4π | | 3 | 6π | | 10 | 20π | | 50 | 100π | | x | ? | In the table, we see that the relationship between the distance traveled and the number of wheel rotations is a proportional relationship. The constant of proportionality is 2π . To find the missing value in the last row of the table, note that each rotation of the wheel contributes 2π feet of distance traveled. So after x rotations the bike will travel $2\pi x$ feet. If d is the distance, in feet, traveled when this wheel makes x rotations, we have the relationship: $$d = 2\pi x$$