DATE

PERIOD

Lesson 6 Summary

NAME

Scaling affects lengths and areas differently. When we make a scaled copy, all original lengths are multiplied by the scale factor. If we make a copy of a rectangle with side lengths 2 units and 4 units using a scale factor of 3, the side lengths of the copy will be 6 units and 12 units, because $2 \cdot 3 = 6$ and $4 \cdot 3 = 12$.

The area of the copy, however, changes by a factor of $(\text{scale factor})^2$. If each side length of the copy is 3 times longer than the original side length, then the area of the copy will be 9 times the area of the original, because $3 \cdot 3$, or 3^2 , equals 9.

In this example, the area of the original rectangle is 8 units² and the area of the scaled copy is 72 units², because $9 \cdot 8 = 72$. We can see that the large rectangle is covered by 9 copies of the small rectangle, without gaps or overlaps. We can also verify this by multiplying the side lengths of the large rectangle: $6 \cdot 12 = 72$.

Lengths are one-dimensional, so in a scaled copy, they change by the scale factor. Area is two-dimensional, so it changes by the *square* of the scale factor. We can see this is true for a rectangle with length l and width w. If we scale the rectangle by a scale factor of s, we get a rectangle with length $s \cdot l$ and width $s \cdot w$. The area of the scaled rectangle is $A = (s \cdot l) \cdot (s \cdot w)$, so $A = (s^2) \cdot (l \cdot w)$. The fact that the area is multiplied by the square of the scale factor is true for scaled copies of other two-dimensional figures too, not just for rectangles.