Lesson 6 Summary

Scaling affects lengths and areas differently. When we make a scaled copy, all original lengths are multiplied by the scale factor. If we make a copy of a rectangle with side lengths 2 units and 4 units using a scale factor of 3, the side lengths of the copy will be 6 units and 12 units, because $2 \cdot 3=6$ and $4 \cdot 3=12$.

The area of the copy, however, changes by a factor of (scale factor) ${ }^{2}$. If each side length of the copy is 3 times longer than the original side length, then the area of the copy will be 9 times the area of the original, because $3 \cdot 3$, or 3^{2}, equals 9 .

In this example, the area of the original rectangle is 8 units 2 and the area of the scaled copy is 72 units 2, because $9 \cdot 8=72$. We can see that the large rectangle is covered by 9 copies of the small rectangle, without gaps or overlaps. We can also verify this by multiplying the side lengths of the large rectangle: $6 \cdot 12=72$.

Lengths are one-dimensional, so in a scaled copy, they change by the scale factor. Area is two-dimensional, so it changes by the square of the scale factor. We can see this is true for a rectangle with length l and width w. If we scale the rectangle by a scale factor of s, we get a rectangle with length $s \cdot l$ and width $s \cdot w$. The area of the scaled rectangle is $A=(s \cdot l) \cdot(s \cdot w)$, so $A=\left(s^{2}\right) \cdot(l \cdot w)$. The fact that the area is multiplied by the square of the scale factor is true for scaled copies of other two-dimensional figures too, not just for rectangles.

