Unit 7 Lesson 10 Cumulative Practice Problems

1. A triangle has sides of length $7 \mathrm{~cm}, 4 \mathrm{~cm}$, and 5 cm . How many unique triangles can be drawn that fit that description? Explain or show your reasoning.
2. A triangle has one side that is 5 units long and an adjacent angle that measures 25°. The two other angles in the triangle measure 90° and 65°. Complete the two diagrams to create two different triangles with these measurements.

3. Is it possible to make a triangle that has angles measuring 90 degrees, 30 degrees, and 100 degrees? If so, draw an example. If not, explain your reasoning.
4. Segments $C D, A B$, and $F G$ intersect at point E. Angle $F E C$ is a right angle. Identify any pairs of angles that are complementary.

(From Unit 7, Lesson 2.)
5. Match each equation to a step that will help solve the equation for x.
A. $3 x=-4$
6. Add $\frac{1}{3}$ to each side.
B. $-4.5=x-3$
7. Add $\frac{-1}{3}$ to each side.
C. $3=\frac{-x}{3}$
8. Add 3 to each side.
D. $\frac{1}{3}=-3 x$
9. Add -3 to each side.
E. $x-\frac{1}{3}=0.4$
10. Multiply each side by 3..
F. $3+x=8$
11. Multiply each side by -3 .
G. $\frac{x}{3}=15$
12. Multiply each side by $\frac{1}{3}$.
H. $7=\frac{1}{3}+x$
13. Multiply each side by $\frac{-1}{3}$
(From Unit 5, Lesson 15.)
14. a. If you deposit $\$ 300$ in an account with a 6% interest rate, how much will be in your account after 1 year?
b. If you leave this money in the account, how much will be in your account after 2 years?
(From Unit 4, Lesson 8.)
