Lesson 15 Summary

Here is an inequality: $3(10-2 x)<18$. The solution to this inequality is all the values you could use in place of x to make the inequality true.

In order to solve this, we can first solve the related equation $3(10-2 x)=18$ to get the solution $x=2$. That means 2 is the boundary between values of x that make the inequality true and values that make the inequality false.

To solve the inequality, we can check numbers greater than 2 and less than 2 and see which ones make the inequality true.

Let's check a number that is greater than 2: $x=5$. Replacing x with 5 in the inequality, we get $3(10-2 \cdot 5)<18$ or just $0<18$. This is true, so $x=5$ is a solution. This means that all values greater than 2 make the inequality true. We can write the solutions as $x>2$ and also represent the solutions on a number line:

Notice that 2 itself is not a solution because it's the value of x that makes $3(10-2 x)$ equal to 18 , and so it does not make $3(10-2 x)<18$ true.

For confirmation that we found the correct solution, we can also test a value that is less than 2 . If we test $x=0$, we get $3(10-2 \cdot 0)<18$ or just $30<18$. This is false, so $x=0$ and all values of x that are less than 2 are not solutions.

