NAME

DATE

PERIOD

Lesson 10 Summary

Equations can be solved in many ways. In this lesson, we focused on equations with a specific structure, and two specific ways to solve them.

Suppose we are trying to solve the equation $\frac{4}{5}(x + 27) = 16$. Two useful approaches are:

- divide each side by $\frac{4}{5}$
- apply the distributive property

In order to decide which approach is better, we can look at the numbers and think about which would be easier to compute. We notice that $\frac{4}{5} \cdot 27$ will be hard, because 27 isn't divisible by 5. But $16 \div \frac{4}{5}$ gives us $16 \cdot \frac{5}{4}$, and 16 is divisible by 4. Dividing each side by $\frac{4}{5}$ gives:

$$\frac{\frac{4}{5}(x+27) = 16}{\frac{5}{4} \cdot \frac{4}{5}(x+27) = 16 \cdot \frac{5}{4}}$$
$$x+27 = 20$$
$$x = -7$$

Sometimes the calculations are simpler if we first use the distributive property. Let's look at the equation 100(x + 0.06) = 21. If we first divide each side by 100, we get $\frac{21}{100}$ or 0.21 on the right side of the equation. But if we use the distributive property first, we get an equation that only contains whole numbers.

$$100(x + 0.06) = 21$$

$$100x + 6 = 21$$

$$100x = 15$$

$$x = \frac{15}{100}$$