Lesson 8 Summary

The balanced hanger shows 3 equal, unknown weights and 32 -unit weights on the left and an 18-unit weight on the right.

There are 3 unknown weights plus 6 units of weight on the left. We could represent this balanced hanger with an equation and solve the equation the same way we did before.

$$
\begin{aligned}
3 x+6 & =18 \\
3 x & =12 \\
x & =4
\end{aligned}
$$

Since there are 3 groups of $x+2$ on the left, we could represent this hanger with a different equation: $3(x+2)=18$.

$$
3(x+2)=18
$$

The two sides of the hanger balance with these weights: 3 groups of $x+2$ on one side, and 18 , or 3 groups of 6, on the other side.

Download for free at openupresources.org.

The two sides of the hanger will balance with $\frac{1}{3}$ of the weight on each side: $\frac{1}{3} \cdot 3(x+2)=\frac{1}{3} \cdot 18$.

We can remove 2 units of weight from each side, and the hanger will stay balanced. This is the same as subtracting 2 from each side of the equation.

An equation for the new balanced hanger is $x=4$. This gives the solution to the original equation.

Here is a concise way to write the steps above:

$$
\begin{aligned}
3(x+2) & =18 \\
x+2 & =6 \quad \text { after multiplying each side by } \frac{1}{3} \\
x & =4 \quad \text { after subtracting } 2 \text { from each side }
\end{aligned}
$$

